Synapses on sympathetic neurons and parasympathetic neurons differ in their vulnerability to diabetes.
نویسندگان
چکیده
Synapses in autonomic ganglia represent the final output of various CNS structures that regulate the function of the periphery. Normally, these excitatory cholinergic-nicotinic synapses produce large suprathreshold EPSPs on sympathetic and parasympathetic neurons to convey signals from the CNS. However, in certain disease states, synaptic transmission in autonomic ganglia is depressed and the periphery becomes deregulated. For example, previous work demonstrated that hyperglycemia depresses EPSPs on sympathetic neurons and disrupts sympathetic reflexes by causing an ROS-dependent inactivation of the postsynaptic nAChRs. What is not clear, however, is whether some autonomic neurons are more vulnerable to hyperglycemia than others. One possibility is that sympathetic neurons may be more prone than cholinergic parasympathetic neurons to hyperglycemia-induced elevations in cytosolic ROS because sympathetic neurons contain several pro-oxidant molecules involved in noradrenaline metabolism. To test this hypothesis, we recorded synaptic transmission from different mouse sympathetic and parasympathetic ganglia, as well as from the adrenal medulla. In addition, we used cellular imaging to measure hyperglycemia-induced changes in cytosolic ROS and whole-cell recordings to measure the use-dependent rundown of ACh-evoked currents. Our results demonstrate that hyperglycemia depresses synaptic transmission on sympathetic neurons and adrenal chromaffin cells and elevates cytosolic ROS. Conversely, hyperglycemia has little effect on synaptic transmission at synapses on parasympathetic neurons. We conclude that sympathetic neurons and adrenal chromaffin cells are more vulnerable to diabetes than parasympathetic neurons, a finding that may have implications for both long-term diabetic autonomic neuropathies and insulin-induced hypoglycemia, a serious complication of diabetes.
منابع مشابه
Stereological Study on the Neurons of Superior Cervical Sympathetic Ganglion in Diabetic Rats
Background: Most research on autonomic dysfunction of diabetes mellitus is conducted on ganglions innervating gastrointestinal (GI) tract and there are limited works focusing on cervical sympathetic ganglia. The effects of diabetes mellitus (DM) on the neurons of superior cervical sympathetic ganglion (SCSG) are investigated by stereological methods. Material and Methods: Female rats (n=72) ran...
متن کاملSynaptic Plasticity in Cardiac Innervation and Its Potential Role in Atrial Fibrillation
Synaptic plasticity is defined as the ability of synapses to change their strength of transmission. Plasticity of synaptic connections in the brain is a major focus of neuroscience research, as it is the primary mechanism underpinning learning and memory. Beyond the brain however, plasticity in peripheral neurons is less well understood, particularly in the neurons innervating the heart. The at...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملNeurodynamic control of the heart of freely moving spiny lobster (Panulirus japonicus)
The heart of the crustaceans has its own pacemaker neurons inside the heart, which are composed of 9 neurons. The neurons receive innervations of only three kinds of axons originated from the central nervous system; one pair of inhibitory and two pairs of acceleratory axons. Thus, in terms of the neural cardiac control from higher center, this system may have much more simplistic operation comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 26 شماره
صفحات -
تاریخ انتشار 2014